

Main initiatives 2005-2011

- Pilot study on farmland birds
 - First pan-European maps
 - Issues to address
 - High Nature Value farmland designation
- SCALES
- TRIM*maps*

Main issues to be addressed

- 1) data access constraints
- 2) spatial coverage & representation
- 3) availability of environmental data
- 4) heterogeneity of the observations
- 5) statistics

Issues to be addressed

- 1) data access constraints
- 2) spatial coverage & representation
- 3) availability of environmental data
- 4) heterogeneity of the observations
- 5)

Issues to address (4): data heterogeneity

Detectability

number of observed birds (C) \neq

birds present (N)

C = N * p

(p = detection probability)

Field methods used by schemes across Europe

Method	No. schemes
Line transects	11
Point counts	18
Territory mapping	4

Proposed solutions

- create maps from one scheme or groups of schemes
- combine different maps ("map mosaicking")
- maps show combinations of relative abundances

How to calibrate between different monitoring methods ?

(some) calibration possibilities

- Two different methods in the same region
- Set of plots with standardized method across Europe
- Multi-scale modelling approach

Calibration

- Two different methods in the same region
- Set of plots with standardized method across Europe
- Multi-scale modelling approach

Multi-scale modelling

- First make international models with monitoring method as co-variate
- Then make national maps
- Combine national maps using calibration factor to account for different monitoring methods

International scale

- International models with monitoring method as co-variate
- Data per sample site is necessary
- Only possible with international co-variables

International scale

- Results:
 - $_{\odot}\ensuremath{\text{International}}$ models and maps
 - Calibration factor between monitoring schemes

• Create high-quality map with international ánd national covariables

Tinn-R - [Z:\Henk\Spatial_statistics\TRIMmaps\example1\example1.r]		
Elle Broject Edit Formyt Marks Insert Search Options Iools B, View Window Web, Help		
🖓 📄 🕴 👘 🖓 🖇		
◎ 표 "~ 표 1 표 - 표 3 < > ♥ 분위 11 표 분분 미나경 및 편 ♥ ● ● В ✿ 분		
example1 /		
28		
29 🗱 Make a TRIMdata object		
30 trimdata <- data2TRINnaps		
31 named="trimdata",	# name of the data (for saving purposes)	
92 outdir=outdir,	# name of output-directory	
33 plot.data="lancol.csv",	# name of plot data	
34 OBS.DIR=NULL,	# NVLL in this case because observations are included in 1	
35 crs=crs,	# coordinate reference	
36 use.maps=FALSE,	# No standard maps	
37 User.maps=TRUE,	# OUr own maps yes.	
39 User.dir=paste(getwd(),"/grids10km",sep=""),	# Point to folder covariate maps	
39 User.all.question=FALSE,	# stop asking me which maps I want (PALSE=use all the map-	
40 add.zeroez=FALSE,	# Add zeroes by species/plot combi? (FALSE= no, TRUW-yes)	
41 generate.serces=FALSE,	# yes random	
42 User.ors=ors	# The maps are in the same coordinate reference system.	
43]		
44		
45		
46 #add offset		
47 #trimiata[[1]]Sarea<=200		
48 #trimdata[[2]]\$area<-400		
49		
80		
51 HØ Most basic analysis possible		
52 # count data		
63 # Model 1 - GLM1/ Var: X, Y, alt, corine (-gr04), no clim GL	01	
54		
sa trimigin <- ikinospaj		
oo IRINGGA - CLIMAGA ,		
57 CLOBEVALIDATION"2,		
** */netype='/esponse',		
or mine.args=lise(block=c(2000,2000)),		
<pre>du outrait-parte (outare, gimi , SEP='(1'));</pre>	1	
Lin 201401 Col 1 Normal mode (millionnal) Shar 4 50 VD		

Inferring territory density maps from point counts: Dutch farmland birds

- 5 min point counts
- All observations mapped
- Automated clustering to territories
- Distance function per species
- Real density maps

More information on TRIMmaps

- Today 17:30 19:00
- Main room

Thank you for your attention...

...and special thanks to all the organisations and volunteer fieldworkers who make this possible !

